3.1.71 \(\int \frac {1}{a-b \cos ^4(x)} \, dx\) [71]

3.1.71.1 Optimal result
3.1.71.2 Mathematica [A] (verified)
3.1.71.3 Rubi [A] (verified)
3.1.71.4 Maple [A] (verified)
3.1.71.5 Fricas [B] (verification not implemented)
3.1.71.6 Sympy [F(-1)]
3.1.71.7 Maxima [F]
3.1.71.8 Giac [B] (verification not implemented)
3.1.71.9 Mupad [B] (verification not implemented)

3.1.71.1 Optimal result

Integrand size = 11, antiderivative size = 101 \[ \int \frac {1}{a-b \cos ^4(x)} \, dx=-\frac {\arctan \left (\frac {\sqrt {\sqrt {a}-\sqrt {b}} \cot (x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt {\sqrt {a}-\sqrt {b}}}-\frac {\arctan \left (\frac {\sqrt {\sqrt {a}+\sqrt {b}} \cot (x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt {\sqrt {a}+\sqrt {b}}} \]

output
-1/2*arctan(cot(x)*(a^(1/2)-b^(1/2))^(1/2)/a^(1/4))/a^(3/4)/(a^(1/2)-b^(1/ 
2))^(1/2)-1/2*arctan(cot(x)*(a^(1/2)+b^(1/2))^(1/2)/a^(1/4))/a^(3/4)/(a^(1 
/2)+b^(1/2))^(1/2)
 
3.1.71.2 Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.08 \[ \int \frac {1}{a-b \cos ^4(x)} \, dx=\frac {\arctan \left (\frac {\sqrt {a} \tan (x)}{\sqrt {a+\sqrt {a} \sqrt {b}}}\right )}{2 \sqrt {a} \sqrt {a+\sqrt {a} \sqrt {b}}}-\frac {\text {arctanh}\left (\frac {\sqrt {a} \tan (x)}{\sqrt {-a+\sqrt {a} \sqrt {b}}}\right )}{2 \sqrt {a} \sqrt {-a+\sqrt {a} \sqrt {b}}} \]

input
Integrate[(a - b*Cos[x]^4)^(-1),x]
 
output
ArcTan[(Sqrt[a]*Tan[x])/Sqrt[a + Sqrt[a]*Sqrt[b]]]/(2*Sqrt[a]*Sqrt[a + Sqr 
t[a]*Sqrt[b]]) - ArcTanh[(Sqrt[a]*Tan[x])/Sqrt[-a + Sqrt[a]*Sqrt[b]]]/(2*S 
qrt[a]*Sqrt[-a + Sqrt[a]*Sqrt[b]])
 
3.1.71.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.54, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 3688, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{a-b \cos ^4(x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{a-b \sin \left (x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 3688

\(\displaystyle -\int \frac {\cot ^2(x)+1}{(a-b) \cot ^4(x)+2 a \cot ^2(x)+a}d\cot (x)\)

\(\Big \downarrow \) 1480

\(\displaystyle -\frac {1}{2} \left (1-\frac {\sqrt {b}}{\sqrt {a}}\right ) \int \frac {1}{(a-b) \cot ^2(x)+\sqrt {a} \left (\sqrt {a}-\sqrt {b}\right )}d\cot (x)-\frac {1}{2} \left (\frac {\sqrt {b}}{\sqrt {a}}+1\right ) \int \frac {1}{(a-b) \cot ^2(x)+\sqrt {a} \left (\sqrt {a}+\sqrt {b}\right )}d\cot (x)\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\left (\frac {\sqrt {b}}{\sqrt {a}}+1\right ) \arctan \left (\frac {\sqrt {\sqrt {a}-\sqrt {b}} \cot (x)}{\sqrt [4]{a}}\right )}{2 \sqrt [4]{a} \sqrt {\sqrt {a}-\sqrt {b}} \left (\sqrt {a}+\sqrt {b}\right )}-\frac {\left (1-\frac {\sqrt {b}}{\sqrt {a}}\right ) \arctan \left (\frac {\sqrt {\sqrt {a}+\sqrt {b}} \cot (x)}{\sqrt [4]{a}}\right )}{2 \sqrt [4]{a} \left (\sqrt {a}-\sqrt {b}\right ) \sqrt {\sqrt {a}+\sqrt {b}}}\)

input
Int[(a - b*Cos[x]^4)^(-1),x]
 
output
-1/2*((1 + Sqrt[b]/Sqrt[a])*ArcTan[(Sqrt[Sqrt[a] - Sqrt[b]]*Cot[x])/a^(1/4 
)])/(a^(1/4)*Sqrt[Sqrt[a] - Sqrt[b]]*(Sqrt[a] + Sqrt[b])) - ((1 - Sqrt[b]/ 
Sqrt[a])*ArcTan[(Sqrt[Sqrt[a] + Sqrt[b]]*Cot[x])/a^(1/4)])/(2*a^(1/4)*(Sqr 
t[a] - Sqrt[b])*Sqrt[Sqrt[a] + Sqrt[b]])
 

3.1.71.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3688
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = 
 FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[(a + 2*a*ff^2*x^2 + ( 
a + b)*ff^4*x^4)^p/(1 + ff^2*x^2)^(2*p + 1), x], x, Tan[e + f*x]/ff], x]] / 
; FreeQ[{a, b, e, f}, x] && IntegerQ[p]
 
3.1.71.4 Maple [A] (verified)

Time = 0.67 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.71

method result size
default \(a \left (\frac {\arctan \left (\frac {a \tan \left (x \right )}{\sqrt {\left (\sqrt {a b}+a \right ) a}}\right )}{2 a \sqrt {\left (\sqrt {a b}+a \right ) a}}-\frac {\operatorname {arctanh}\left (\frac {a \tan \left (x \right )}{\sqrt {\left (\sqrt {a b}-a \right ) a}}\right )}{2 a \sqrt {\left (\sqrt {a b}-a \right ) a}}\right )\) \(72\)
risch \(\munderset {\textit {\_R} =\operatorname {RootOf}\left (1+\left (256 a^{4}-256 a^{3} b \right ) \textit {\_Z}^{4}+32 a^{2} \textit {\_Z}^{2}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i x}+\left (-\frac {128 i a^{4}}{b}+128 i a^{3}\right ) \textit {\_R}^{3}+\left (\frac {32 a^{3}}{b}-32 a^{2}\right ) \textit {\_R}^{2}+\left (-\frac {8 i a^{2}}{b}-8 i a \right ) \textit {\_R} +\frac {2 a}{b}+1\right )\) \(101\)

input
int(1/(a-b*cos(x)^4),x,method=_RETURNVERBOSE)
 
output
a*(1/2/a/(((a*b)^(1/2)+a)*a)^(1/2)*arctan(a*tan(x)/(((a*b)^(1/2)+a)*a)^(1/ 
2))-1/2/a/(((a*b)^(1/2)-a)*a)^(1/2)*arctanh(a*tan(x)/(((a*b)^(1/2)-a)*a)^( 
1/2)))
 
3.1.71.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 817 vs. \(2 (65) = 130\).

Time = 0.35 (sec) , antiderivative size = 817, normalized size of antiderivative = 8.09 \[ \int \frac {1}{a-b \cos ^4(x)} \, dx=-\frac {1}{8} \, \sqrt {-\frac {{\left (a^{2} - a b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} + 1}{a^{2} - a b}} \log \left (b \cos \left (x\right )^{2} + 2 \, {\left (a b \cos \left (x\right ) \sin \left (x\right ) - {\left (a^{4} - a^{3} b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} \cos \left (x\right ) \sin \left (x\right )\right )} \sqrt {-\frac {{\left (a^{2} - a b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} + 1}{a^{2} - a b}} + {\left (a^{3} - a^{2} b - 2 \, {\left (a^{3} - a^{2} b\right )} \cos \left (x\right )^{2}\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}}\right ) + \frac {1}{8} \, \sqrt {-\frac {{\left (a^{2} - a b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} + 1}{a^{2} - a b}} \log \left (b \cos \left (x\right )^{2} - 2 \, {\left (a b \cos \left (x\right ) \sin \left (x\right ) - {\left (a^{4} - a^{3} b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} \cos \left (x\right ) \sin \left (x\right )\right )} \sqrt {-\frac {{\left (a^{2} - a b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} + 1}{a^{2} - a b}} + {\left (a^{3} - a^{2} b - 2 \, {\left (a^{3} - a^{2} b\right )} \cos \left (x\right )^{2}\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}}\right ) + \frac {1}{8} \, \sqrt {\frac {{\left (a^{2} - a b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} - 1}{a^{2} - a b}} \log \left (-b \cos \left (x\right )^{2} + 2 \, {\left (a b \cos \left (x\right ) \sin \left (x\right ) + {\left (a^{4} - a^{3} b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} \cos \left (x\right ) \sin \left (x\right )\right )} \sqrt {\frac {{\left (a^{2} - a b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} - 1}{a^{2} - a b}} + {\left (a^{3} - a^{2} b - 2 \, {\left (a^{3} - a^{2} b\right )} \cos \left (x\right )^{2}\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}}\right ) - \frac {1}{8} \, \sqrt {\frac {{\left (a^{2} - a b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} - 1}{a^{2} - a b}} \log \left (-b \cos \left (x\right )^{2} - 2 \, {\left (a b \cos \left (x\right ) \sin \left (x\right ) + {\left (a^{4} - a^{3} b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} \cos \left (x\right ) \sin \left (x\right )\right )} \sqrt {\frac {{\left (a^{2} - a b\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}} - 1}{a^{2} - a b}} + {\left (a^{3} - a^{2} b - 2 \, {\left (a^{3} - a^{2} b\right )} \cos \left (x\right )^{2}\right )} \sqrt {\frac {b}{a^{5} - 2 \, a^{4} b + a^{3} b^{2}}}\right ) \]

input
integrate(1/(a-b*cos(x)^4),x, algorithm="fricas")
 
output
-1/8*sqrt(-((a^2 - a*b)*sqrt(b/(a^5 - 2*a^4*b + a^3*b^2)) + 1)/(a^2 - a*b) 
)*log(b*cos(x)^2 + 2*(a*b*cos(x)*sin(x) - (a^4 - a^3*b)*sqrt(b/(a^5 - 2*a^ 
4*b + a^3*b^2))*cos(x)*sin(x))*sqrt(-((a^2 - a*b)*sqrt(b/(a^5 - 2*a^4*b + 
a^3*b^2)) + 1)/(a^2 - a*b)) + (a^3 - a^2*b - 2*(a^3 - a^2*b)*cos(x)^2)*sqr 
t(b/(a^5 - 2*a^4*b + a^3*b^2))) + 1/8*sqrt(-((a^2 - a*b)*sqrt(b/(a^5 - 2*a 
^4*b + a^3*b^2)) + 1)/(a^2 - a*b))*log(b*cos(x)^2 - 2*(a*b*cos(x)*sin(x) - 
 (a^4 - a^3*b)*sqrt(b/(a^5 - 2*a^4*b + a^3*b^2))*cos(x)*sin(x))*sqrt(-((a^ 
2 - a*b)*sqrt(b/(a^5 - 2*a^4*b + a^3*b^2)) + 1)/(a^2 - a*b)) + (a^3 - a^2* 
b - 2*(a^3 - a^2*b)*cos(x)^2)*sqrt(b/(a^5 - 2*a^4*b + a^3*b^2))) + 1/8*sqr 
t(((a^2 - a*b)*sqrt(b/(a^5 - 2*a^4*b + a^3*b^2)) - 1)/(a^2 - a*b))*log(-b* 
cos(x)^2 + 2*(a*b*cos(x)*sin(x) + (a^4 - a^3*b)*sqrt(b/(a^5 - 2*a^4*b + a^ 
3*b^2))*cos(x)*sin(x))*sqrt(((a^2 - a*b)*sqrt(b/(a^5 - 2*a^4*b + a^3*b^2)) 
 - 1)/(a^2 - a*b)) + (a^3 - a^2*b - 2*(a^3 - a^2*b)*cos(x)^2)*sqrt(b/(a^5 
- 2*a^4*b + a^3*b^2))) - 1/8*sqrt(((a^2 - a*b)*sqrt(b/(a^5 - 2*a^4*b + a^3 
*b^2)) - 1)/(a^2 - a*b))*log(-b*cos(x)^2 - 2*(a*b*cos(x)*sin(x) + (a^4 - a 
^3*b)*sqrt(b/(a^5 - 2*a^4*b + a^3*b^2))*cos(x)*sin(x))*sqrt(((a^2 - a*b)*s 
qrt(b/(a^5 - 2*a^4*b + a^3*b^2)) - 1)/(a^2 - a*b)) + (a^3 - a^2*b - 2*(a^3 
 - a^2*b)*cos(x)^2)*sqrt(b/(a^5 - 2*a^4*b + a^3*b^2)))
 
3.1.71.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{a-b \cos ^4(x)} \, dx=\text {Timed out} \]

input
integrate(1/(a-b*cos(x)**4),x)
 
output
Timed out
 
3.1.71.7 Maxima [F]

\[ \int \frac {1}{a-b \cos ^4(x)} \, dx=\int { -\frac {1}{b \cos \left (x\right )^{4} - a} \,d x } \]

input
integrate(1/(a-b*cos(x)^4),x, algorithm="maxima")
 
output
-integrate(1/(b*cos(x)^4 - a), x)
 
3.1.71.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 299 vs. \(2 (65) = 130\).

Time = 0.38 (sec) , antiderivative size = 299, normalized size of antiderivative = 2.96 \[ \int \frac {1}{a-b \cos ^4(x)} \, dx=\frac {{\left (3 \, \sqrt {a^{2} + \sqrt {a b} a} a^{2} - 4 \, \sqrt {a^{2} + \sqrt {a b} a} a b - 3 \, \sqrt {a^{2} + \sqrt {a b} a} \sqrt {a b} a + 4 \, \sqrt {a^{2} + \sqrt {a b} a} \sqrt {a b} b\right )} {\left (\pi \left \lfloor \frac {x}{\pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {2 \, \tan \left (x\right )}{\sqrt {\frac {4 \, a + \sqrt {-16 \, {\left (a - b\right )} a + 16 \, a^{2}}}{a}}}\right )\right )} {\left | a \right |}}{2 \, {\left (3 \, a^{5} - 7 \, a^{4} b + 4 \, a^{3} b^{2}\right )}} + \frac {{\left (3 \, \sqrt {a^{2} - \sqrt {a b} a} a^{2} - 4 \, \sqrt {a^{2} - \sqrt {a b} a} a b + 3 \, \sqrt {a^{2} - \sqrt {a b} a} \sqrt {a b} a - 4 \, \sqrt {a^{2} - \sqrt {a b} a} \sqrt {a b} b\right )} {\left (\pi \left \lfloor \frac {x}{\pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {2 \, \tan \left (x\right )}{\sqrt {\frac {4 \, a - \sqrt {-16 \, {\left (a - b\right )} a + 16 \, a^{2}}}{a}}}\right )\right )} {\left | a \right |}}{2 \, {\left (3 \, a^{5} - 7 \, a^{4} b + 4 \, a^{3} b^{2}\right )}} \]

input
integrate(1/(a-b*cos(x)^4),x, algorithm="giac")
 
output
1/2*(3*sqrt(a^2 + sqrt(a*b)*a)*a^2 - 4*sqrt(a^2 + sqrt(a*b)*a)*a*b - 3*sqr 
t(a^2 + sqrt(a*b)*a)*sqrt(a*b)*a + 4*sqrt(a^2 + sqrt(a*b)*a)*sqrt(a*b)*b)* 
(pi*floor(x/pi + 1/2) + arctan(2*tan(x)/sqrt((4*a + sqrt(-16*(a - b)*a + 1 
6*a^2))/a)))*abs(a)/(3*a^5 - 7*a^4*b + 4*a^3*b^2) + 1/2*(3*sqrt(a^2 - sqrt 
(a*b)*a)*a^2 - 4*sqrt(a^2 - sqrt(a*b)*a)*a*b + 3*sqrt(a^2 - sqrt(a*b)*a)*s 
qrt(a*b)*a - 4*sqrt(a^2 - sqrt(a*b)*a)*sqrt(a*b)*b)*(pi*floor(x/pi + 1/2) 
+ arctan(2*tan(x)/sqrt((4*a - sqrt(-16*(a - b)*a + 16*a^2))/a)))*abs(a)/(3 
*a^5 - 7*a^4*b + 4*a^3*b^2)
 
3.1.71.9 Mupad [B] (verification not implemented)

Time = 3.14 (sec) , antiderivative size = 938, normalized size of antiderivative = 9.29 \[ \int \frac {1}{a-b \cos ^4(x)} \, dx=2\,\mathrm {atanh}\left (\frac {8\,a^6\,b\,\mathrm {tan}\left (x\right )\,\sqrt {\frac {a^2}{16\,\left (a^3\,b-a^4\right )}+\frac {\sqrt {a^3\,b}}{16\,\left (a^3\,b-a^4\right )}}}{2\,a^5\,b-2\,a^4\,b^2-\frac {2\,a^8\,b^2}{a^3\,b-a^4}+\frac {2\,a^9\,b}{a^3\,b-a^4}-\frac {2\,a^6\,b^2\,\sqrt {a^3\,b}}{a^3\,b-a^4}+\frac {2\,a^7\,b\,\sqrt {a^3\,b}}{a^3\,b-a^4}}-\frac {8\,a^2\,b\,\mathrm {tan}\left (x\right )\,\sqrt {\frac {a^2}{16\,\left (a^3\,b-a^4\right )}+\frac {\sqrt {a^3\,b}}{16\,\left (a^3\,b-a^4\right )}}}{2\,a\,b+\frac {2\,a^5\,b}{a^3\,b-a^4}+\frac {2\,a^3\,b\,\sqrt {a^3\,b}}{a^3\,b-a^4}}+\frac {8\,a^4\,b\,\mathrm {tan}\left (x\right )\,\sqrt {\frac {a^2}{16\,\left (a^3\,b-a^4\right )}+\frac {\sqrt {a^3\,b}}{16\,\left (a^3\,b-a^4\right )}}\,\sqrt {a^3\,b}}{2\,a^5\,b-2\,a^4\,b^2-\frac {2\,a^8\,b^2}{a^3\,b-a^4}+\frac {2\,a^9\,b}{a^3\,b-a^4}-\frac {2\,a^6\,b^2\,\sqrt {a^3\,b}}{a^3\,b-a^4}+\frac {2\,a^7\,b\,\sqrt {a^3\,b}}{a^3\,b-a^4}}\right )\,\sqrt {\frac {a^2+\sqrt {a^3\,b}}{16\,\left (a^3\,b-a^4\right )}}-2\,\mathrm {atanh}\left (\frac {8\,a^2\,b\,\mathrm {tan}\left (x\right )\,\sqrt {\frac {a^2}{16\,\left (a^3\,b-a^4\right )}-\frac {\sqrt {a^3\,b}}{16\,\left (a^3\,b-a^4\right )}}}{2\,a\,b+\frac {2\,a^5\,b}{a^3\,b-a^4}-\frac {2\,a^3\,b\,\sqrt {a^3\,b}}{a^3\,b-a^4}}-\frac {8\,a^6\,b\,\mathrm {tan}\left (x\right )\,\sqrt {\frac {a^2}{16\,\left (a^3\,b-a^4\right )}-\frac {\sqrt {a^3\,b}}{16\,\left (a^3\,b-a^4\right )}}}{2\,a^5\,b-2\,a^4\,b^2-\frac {2\,a^8\,b^2}{a^3\,b-a^4}+\frac {2\,a^9\,b}{a^3\,b-a^4}+\frac {2\,a^6\,b^2\,\sqrt {a^3\,b}}{a^3\,b-a^4}-\frac {2\,a^7\,b\,\sqrt {a^3\,b}}{a^3\,b-a^4}}+\frac {8\,a^4\,b\,\mathrm {tan}\left (x\right )\,\sqrt {\frac {a^2}{16\,\left (a^3\,b-a^4\right )}-\frac {\sqrt {a^3\,b}}{16\,\left (a^3\,b-a^4\right )}}\,\sqrt {a^3\,b}}{2\,a^5\,b-2\,a^4\,b^2-\frac {2\,a^8\,b^2}{a^3\,b-a^4}+\frac {2\,a^9\,b}{a^3\,b-a^4}+\frac {2\,a^6\,b^2\,\sqrt {a^3\,b}}{a^3\,b-a^4}-\frac {2\,a^7\,b\,\sqrt {a^3\,b}}{a^3\,b-a^4}}\right )\,\sqrt {\frac {a^2-\sqrt {a^3\,b}}{16\,\left (a^3\,b-a^4\right )}} \]

input
int(1/(a - b*cos(x)^4),x)
 
output
2*atanh((8*a^6*b*tan(x)*(a^2/(16*(a^3*b - a^4)) + (a^3*b)^(1/2)/(16*(a^3*b 
 - a^4)))^(1/2))/(2*a^5*b - 2*a^4*b^2 - (2*a^8*b^2)/(a^3*b - a^4) + (2*a^9 
*b)/(a^3*b - a^4) - (2*a^6*b^2*(a^3*b)^(1/2))/(a^3*b - a^4) + (2*a^7*b*(a^ 
3*b)^(1/2))/(a^3*b - a^4)) - (8*a^2*b*tan(x)*(a^2/(16*(a^3*b - a^4)) + (a^ 
3*b)^(1/2)/(16*(a^3*b - a^4)))^(1/2))/(2*a*b + (2*a^5*b)/(a^3*b - a^4) + ( 
2*a^3*b*(a^3*b)^(1/2))/(a^3*b - a^4)) + (8*a^4*b*tan(x)*(a^2/(16*(a^3*b - 
a^4)) + (a^3*b)^(1/2)/(16*(a^3*b - a^4)))^(1/2)*(a^3*b)^(1/2))/(2*a^5*b - 
2*a^4*b^2 - (2*a^8*b^2)/(a^3*b - a^4) + (2*a^9*b)/(a^3*b - a^4) - (2*a^6*b 
^2*(a^3*b)^(1/2))/(a^3*b - a^4) + (2*a^7*b*(a^3*b)^(1/2))/(a^3*b - a^4)))* 
((a^2 + (a^3*b)^(1/2))/(16*(a^3*b - a^4)))^(1/2) - 2*atanh((8*a^2*b*tan(x) 
*(a^2/(16*(a^3*b - a^4)) - (a^3*b)^(1/2)/(16*(a^3*b - a^4)))^(1/2))/(2*a*b 
 + (2*a^5*b)/(a^3*b - a^4) - (2*a^3*b*(a^3*b)^(1/2))/(a^3*b - a^4)) - (8*a 
^6*b*tan(x)*(a^2/(16*(a^3*b - a^4)) - (a^3*b)^(1/2)/(16*(a^3*b - a^4)))^(1 
/2))/(2*a^5*b - 2*a^4*b^2 - (2*a^8*b^2)/(a^3*b - a^4) + (2*a^9*b)/(a^3*b - 
 a^4) + (2*a^6*b^2*(a^3*b)^(1/2))/(a^3*b - a^4) - (2*a^7*b*(a^3*b)^(1/2))/ 
(a^3*b - a^4)) + (8*a^4*b*tan(x)*(a^2/(16*(a^3*b - a^4)) - (a^3*b)^(1/2)/( 
16*(a^3*b - a^4)))^(1/2)*(a^3*b)^(1/2))/(2*a^5*b - 2*a^4*b^2 - (2*a^8*b^2) 
/(a^3*b - a^4) + (2*a^9*b)/(a^3*b - a^4) + (2*a^6*b^2*(a^3*b)^(1/2))/(a^3* 
b - a^4) - (2*a^7*b*(a^3*b)^(1/2))/(a^3*b - a^4)))*((a^2 - (a^3*b)^(1/2))/ 
(16*(a^3*b - a^4)))^(1/2)